Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lasers Surg Med ; 53(10): 1413-1426, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34139024

RESUMO

BACKGROUND AND OBJECTIVES: Wound healing is an important biomedical problem with various associated complications. Although cutaneous wound healing has been studied in vivo extensively using various optical imaging methods, early-stage cellular healing processes were difficult to study due to scab formation. The objective of this study is to demonstrate that minimal laser wounds and optical microscopy can access the detailed cellular healing processes of cutaneous wounds from the early stage. STUDY DESIGN/MATERIALS AND METHODS: A non-ablative fractional laser (NAFL) and label-free two-photon microscopy (TPM) were used to induce minimal cutaneous wounds and to image the wounds in three-dimension. Sixteen hairless mice and a single human volunteer were used. NAFL wounds were induced in the hindlimb skin of the mice and in the forearm skin of the human subject. The NAFL wounds were longitudinally imaged during the healing period, starting from an hour post wound induction in the earliest and until 21 days. Cells in the wound and surrounding normal skin were visualized based on two-photon excited auto-fluorescence (TPAF), and cellular changes were tracked by analyzing longitudinal TPM images both qualitatively and quantitatively. Damage and recovery in the skin dermis were tracked by using the second harmonic generation (SHG) signal of collagen. Immunofluorescence and hematoxylin and eosin histology analysis were conducted to validate the TPM results of the murine skin. RESULTS: Cellular healing processes in NAFL wounds and surroundings could be observed by longitudinal TPM. In the case of murine skin, various healing phases including inflammation, re-epithelization, granulation tissue formation, and late remodeling phase including collagen regeneration were observed in the same wounds owing to minimal or no scab formation. The re-epithelization process was analyzed quantitatively by measuring cell density and thickness of the epithelium in the wound surroundings. In the case of the human skin, the access inside the wound was blocked for a few days post wound induction due to scabs but the cellular changes in the wound surroundings were observed from the early stage. Cellular healing processes in the NAFL wound of the human skin were similar to those in murine skin. CONCLUSIONS: The minimal NAFL wound model and label-free TPM demonstrated the cell level assessment of wound healing processes with applicability to human subjects. © 2021 Wiley Periodicals LLC.


Assuntos
Microscopia , Cicatrização , Animais , Colágeno , Lasers , Camundongos , Pele
2.
Blood ; 134(16): 1312-1322, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31387916

RESUMO

The microbiota regulate hematopoiesis in the bone marrow (BM); however, the detailed mechanisms remain largely unknown. In this study, we explored how microbiota-derived molecules (MDMs) were transferred to the BM and sensed by the local immune cells to control hematopoiesis under steady-state conditions. We reveal that MDMs, including bacterial DNA (bDNA), reach the BM via systemic blood circulation and are captured by CX3CR1+ mononuclear cells (MNCs). CX3CR1+ MNCs sense MDMs via endolysosomal Toll-like receptors (TLRs) to produce inflammatory cytokines, which control the basal expansion of hematopoietic progenitors, but not hematopoietic stem cells, and their differentiation potential toward myeloid lineages. CX3CR1+ MNCs colocate with hematopoietic progenitors at the perivascular region, and the depletion of CX3CR1+ MNCs impedes bDNA influx into the BM. Moreover, the abrogation of TLR pathways in CX3CR1+ MNCs abolished the microbiota effect on hematopoiesis. These studies demonstrate that systemic MDMs control BM hematopoiesis by producing CX3CR1+ MNC-mediated cytokines in the steady-state.


Assuntos
Células da Medula Óssea/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Leucócitos Mononucleares/metabolismo , Microbiota/fisiologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
3.
Exp Eye Res ; 174: 51-58, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29787746

RESUMO

Two-photon microscopy (TPM) is a three dimensional (3D) microscopic technique based on nonlinear two-photon fluorescence, which has been tested as an alternative to reflectance confocal microscopy (RCM) for detecting fungal keratitis via optical imaging. Although TPM provided images with better contrast than RCM for fungal keratitis, its imaging speed was relatively low because of weak intrinsic signal. Moxifloxacin, a Food and Drug Administration (FDA)-approved antibiotic, was recently used as a cell-labeling agent for TPM. In this study, moxifloxacin was used to label fungal cells for TPM imaging of fungal keratitis models. Fungal cell suspensions and ex vivo fungal keratitis-affected rabbit corneas were prepared using two types of fungal pathogens, Aspergillus fumigatus and Candida albicans, and TPM imaging was performed both with and without moxifloxacin treatment. Fungal cells with enhanced fluorescence were clearly visible by TPM of moxifloxacin-treated fungal cell suspensions. TPM of moxifloxacin-treated fungal keratitis rabbit corneas revealed both the infecting fungal cells and corneal cells similar to those observed in TPM without moxifloxacin treatment, albeit with approximately 10-times enhanced fluorescence. Fungal cells were distinguished from corneal cells on the basis of their distinct morphologies. Thus, TPM with moxifloxacin labeling might be useful for the detection of fungal keratitis at the improved imaging speed.


Assuntos
Aspergilose/diagnóstico por imagem , Candidíase/diagnóstico por imagem , Técnicas de Diagnóstico Oftalmológico , Infecções Oculares Fúngicas/diagnóstico por imagem , Ceratite/diagnóstico por imagem , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Moxifloxacina/administração & dosagem , Coloração e Rotulagem/métodos , Animais , Modelos Animais de Doenças , Infecções Oculares Fúngicas/microbiologia , Imageamento Tridimensional/métodos , Ceratite/microbiologia , Coelhos
4.
Biomed Opt Express ; 8(4): 2148-2161, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28736661

RESUMO

Delineating brain tumor margin is critical for maximizing tumor removal while sparing adjacent normal tissue for better clinical outcome. We describe the use of moxifloxacin-based two-photon (TP)/coherent anti-Stokes Raman scattering (CARS) combined microscopy for differentiating normal mouse brain tissue from metastatic brain tumor tissue based on histoarchitectural and biochemical differences. Moxifloxacin, an FDA-approved compound, was used to label cells in the brain, and moxifloxacin-based two-photon microscopy (TPM) revealed tumor lesions with significantly high cellular density and invading edges in a metastatic brain tumor model. Besides, label-free CARS microscopy showed diminishing of lipid signal due to the destruction of myelin at the tumor site compared to a normal brain tissue site resulting in a complementary contrast for tumor detection. This study demonstrates that moxifloxacin-based TP/CARS combined microscopy might be advantageous for tumor margin identification in the brain that has been a long-standing challenge in the operating room.

5.
Sci Rep ; 7: 44097, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276477

RESUMO

Intravital microscopy of mouse calvarial bone marrow (BM) is a powerful method for studying hematopoietic stem cells (HSCs) and the BM microenvironment at the cellular level. However, the current method used to access the mouse calvaria allows for only a few imaging times in the same mouse because of scar formation and inflammation induced by multiple surgeries. Longitudinal imaging of the BM may help better understand its microenvironment. In this study, a mouse calvarial window model was developed for longitudinal imaging that involves attaching a cover glass window onto the mouse calvaria and sealing the surrounding exposed area with cyanoacrylate glue and dental cement. The model was used for the longitudinal two-photon microscopy (TPM) imaging of the BM engraftment process. The same BM cavity sites were imaged multiple times over 4 weeks after BM transplantation (BMT). Temporal changes in the BM microenvironment, such as the reconstitution of transplanted BM cells and the recovery of vasculature, were observed and analysed qualitatively and quantitatively. Longitudinal intravital microscopy using the mouse calvarial window model was successfully demonstrated and may be useful for further BM studies.


Assuntos
Medula Óssea , Cimentos Dentários/farmacologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Osteogênese , Crânio , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Feminino , Camundongos , Crânio/lesões , Crânio/metabolismo , Crânio/patologia
6.
Sci Rep ; 6: 27142, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27283889

RESUMO

Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.


Assuntos
Meios de Contraste/metabolismo , Fluoroquinolonas/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Córnea/metabolismo , Células HT29 , Humanos , Intestino Delgado/metabolismo , Camundongos , Moxifloxacina , Células NIH 3T3 , Pele/metabolismo , Distribuição Tecidual , Bexiga Urinária/metabolismo
7.
Biomed Opt Express ; 6(7): 2542-51, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26203380

RESUMO

Both polarization sensitive optical coherence tomography (PS-OCT) and second harmonic generation (SHG) microscopy are 3D optical imaging methods providing information related to collagen in the skin. PS-OCT provides birefringence information which is due to the collagen composition of the skin. SHG microscopy visualizes collagen fibers in the skin based on their SHG property. These two modalities have been applied to the same skin pathologies associated with collagen changes, but their relationship has not been examined. In this study, we tried to find the relationship by imaging the same skin samples with both modalities. Various parts of the normal rat skin and burn damaged skin were imaged ex vivo, and their images were analyzed both qualitatively and quantitatively. PS-OCT images were analyzed to obtain tissue birefringence. SHG images were analyzed to obtain collagen orientation indices by applying 2D Fourier transform. The skin samples having higher birefringence values had higher collagen orientation indices, and a linear correlation was found between them. Burn damaged skin showed decreases in both parameters compared to the control skins. This relationship between the bulk and microscopic properties of skin may be useful for further skin studies.

8.
Opt Express ; 23(10): 12874-86, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26074541

RESUMO

Polarization-sensitive optical coherence tomography (PS-OCT) is a functional OCT providing both structural and birefringent information of the sample, and it has been applied to the studies of various organs having polarization properties. Fiber-based PS-OCT is sensitive to specular reflection from the sample surface, because signal saturation due to the strong specular reflection can make the polarization measurement difficult. We developed a dark-field PS-OCT which can avoid the specular reflection problem. Dark-field PS-OCT was implemented by adapting a hybrid method of Bessel-beam illumination and Gaussian-beam detection, and a PS-OCT method based on passive delay unit (PDU). The new system was characterized in comparison with the conventional Gaussian-beam based method in both polarization components and various samples including the human skin. Dark-field PS-OCT performed as good as the conventional PS-OCT without the specular reflection artifact. Dark-field PS-OCT may be useful in practical situations where the specular reflection is unavoidable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...